N5 11178

Matrix Methods for the Design of Cascades

Prescribed Surfacc Velocity Distributions

and for Fully Compressible Flow

M. E. SiLvESTER AND C. M. Fircu

Rolls-Royce, Limited
Derby, England

This paper describes matrix methods that have been developed for cal-
culating compressible flow on a blade-to-blade surface of revolution. The
methods have been fully tested to date only for the design of plane cas-
cades to prescribed blade surface distributions; the methods will be illus-
trated here for that problem only. Similar methods are presently being
applied to both the direct and indirect problems and for flow on arbitrary
surfaces of revolution in annular cascades with stream sheet thickness
variations. It is believed that by such methods, both the direct and in-
direct calculations can be reduced to about 60 to 90 seconds of computing.

The trend in compressor and turbine design is toward fewer and more
highly loaded stages. T'o do this and maintain high efficiency demands the
ability to calculate in ever-increasing detail the gas flow through such a
machine. So complex are the equations governing the flow and the
geometries involved that practicable solutions can be found only after
making simplifying assumptions. The degree of approximation is always a
compromise between a realistic description of the physical processes and
a mathematical model that can be solved within reasonable time and cost.
This has led to design procedures which treat the flow in two stages—a
two-dimensional through-flow calculation which neglects circumferential
variations, followed by a two-dimensional blade-to-blade calculation in
which the flow is assumed to take place on a surface of revolution. Al-
though fully three-dimensional calculations are being attempted, these
are slow and costly and have a long way to go before they become design
tools.

It seems likely, therefore, that for a few years to come, two-dimensional
approaches will remain the basis of most design work and, for this reason,
it is worthwhile to make these calculations as realistic and fast as possible.
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76 THEORETICAL PREDICTION OF FLOWS IN TURBOMACHINERY

Methods will be described here for calculations on blade-to-blade
surfaces of revolution. These methods are being applied both to the direct
problem of calculating blade surface velocities when the blade geometries
are prescribed and to the indirect problem of calculating the blade
geometry when the blade surface velocities are prescribed. The methods
will be illustrated by discussing the indirect problem for compressible
flow in a plane cascade. This has been chosen because it is the only problem
for which the methods have been fully tested to date and because the
authors have seen no other fully compressible solution to this problem.
It is believed that the methods described here extend easily to both the
direct and indirect problems on surfaces of revolution with stream sheet
thickness variations.

MATHEMATICAL ANALYSIS

Assumptions
The following assumptions have been made.

(1) The flow is steady, inviscid and irrotational.

(2) The fluid is a perfect gas.

(3) The total temperature is uniform across the entry to the cascade.

(4) The flow is plane two-dimensional flow and the normal com-
ponent of velocity is zero on the blade surface.

(5) The cascade contains an infinite number of equally spaced blades
of infinite length.

The assumption of irrotationality, together with the finite difference
approximations to the differential equations and the boundary-value
approach to the solution of the finite difference equations, tacitly assume
that the flow is everywhere subsonic. However, the method will formally
produce answers with supersonic patches and, where these are small and
the peak Mach numbers only a little above sonic, these solutions are
probably realistic.

Equations of Motion

In the analysis that follows, = and y are Cartesian coordinates with x
measured in the “axial” direction and y in the “pitchwisc” direction, as
shown in figure 1. Velocities and density are normalized with respect to
the stagnation sound speed and stagnation density, respectively.

The equations governing the flow are those of irrotationality and

continuity which are, respectively
V., 9V
——¥=0
dy oz

1)
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i) 0
P (pV2) +@ (pVy) =0 (2)

Density is related to velocity through Bernoulli’s equation

r v—1 e ]1/(7—1)
p=11_7 (sz,_i_yyﬁ)f

Equations (1) and (2) may be satisfied identically by a potential
function ¢ and stream function ¥ defined by

3

— Ve

or

oy
Z=,V,
oy P

oy
or Vy

It will be convenient also to work in terms of the net velocity V and
flow direction 6, related to V, and V, by the equations

Ve=V cos @
V,=Vsiné

F1GURE 1.—One strip of the cascade in the physical plane.
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If we now use ¢ and ¢ as independent variables instead of z and y,
equations (1) and (2) become

1% a6
——V2—=0 3
oV ; v 5 (3)

i) a0
— 2 —=0 4
Va¢(pV)+(pV) a0 (4)

and Bernoulli’s equation is
-1 1(r=1)

p=[1——~—72 V"’] (5)

At this stage, Stanitz (ref. 1) linearized equations (3) and (4) by ap-
proximating equation (5) by

1
SEVAERE

At the equivalent stage in the direct problem, other workers have
arranged the equations either in the form of a pseudo Poisson’s equation,
collecting the terms describing incompressible effects on the left in the
form of a Laplacian and the terms describing compressible effects on the
right in the form of a source term; or they have arranged the equations
in the form of a general partial differential equation in which the coeffi-
cients contained derivatives of the density p. Finite difference and
singularity methods have then been used to solve the equations in these
forms iteratively by guessing the source term or coefficients, solving as
though the equations were linear, and then re-estimating the terms that
had been guessed. Iterative methods based on these forms of arrangements
of the equations converge slowly at high Mach numbers because the
guessed terms are by no means small perturbations and important con-
tributions are left “trailing” one cycle behind in the iterations.

In order to introduce compressibility effects quickly into an iterative
method, the authors consider it better to use Bernoulli’s equation to
express the derivatives of p in terms of those of the dependent variable
and then to collect together all terms containing any particular derivative
of that variable. The coefficients of these variables then do not contain
derivatives of p which have to be guessed. For the indirect cascade problem
considered here, the term d(pV)/d¢ in equation (4) should not be ex-
pressed as p(dV/d¢) +V (3p/3¢) with p and 9p/d¢ being guessed. Instead,
equation (5) should be used to obtain

1—[(y41)/2]7*
1—[@—4»@1W>dv

a7 =5 (
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so that equations (3) and (4) become

Vo0 5a=0 (®)

1 1-[(r+1)/2]7°\ 8V 26

oV \I—[(v—1)/2]*) 36 "oy

If one second-order equation was to be obtained by eliminating be-
tween (6) and (7), then, again, the derivatives of p introduced should be
expressed in terms of those of V. For this problem there is, however, a
neater approach. Define F and H by

=0 )

dF=% av (8)
(S o

s0 that equations (6) and (7) become
%Jrg%: (10)
%—%ﬂ (11)

Using equation (5), equation (8) may be integrated directly for some
values of v. Taking v =4 and writing z=V?2/6, we have
3z 322

F(V) = log V"_J’T_E (12)

~ Taking v=£ and writing 22= 1~ (V?/5), we have

1—|—z> 23 (13)

F(V)= logV+ + e lo (2 =

In each case, the constant of integration has been chosen such that
F(V)—>log V as V—0.

The function F will now be taken as the dependent variable and
equation (10) written in the form

dH aF a0

14
dF 6¢ 61// (14

where, from (8) and (9),
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dH_1 (1—[(7+1)/2]V2>
dF ~ @ \1=[(v—1)/2]V?

The Potential and Deflection Conditions

In figure 1, which shows one strip of the cascade, AB, CE, GF and KH
are dividing streamlines. At any point (z,y) on AB, the flow conditions
are the same as at the point (x,y+t) on JH and similarly for CD and
GF. The lines KA and FE are far upstream and downstream of the
cascade, where flow conditions are uniform. Figure 2 shows the same
diagram mapped into the (¢,¢)-plane with A, B, C, D, and E chosen as
¢ =0. From the definitions of ¢ and ¥, it follows that

do="V ds (15a)
dy=pV dn (15b)
Define
A¢L =¢u—¢n
Adr = —dc
Aps=¢dc— o5
App=de—¢u
Clearly
AdL=ds—¢x
Apr=¢r—op

From (15a), remembering that J, K, E and D are far from the cascade,

T
///////

F16URE 2. —One strip of the cascade in the (¢,4) plane.
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A¢pr=V,tsin 6,
Ad)z' = th sin 04

It is also clear that
Ads— App=A¢pr— A¢r
so that
A¢S—A¢p=t(vu sin Ou—V,i sin 0d) (16)

Equation (16) will be called the potential condition.
From equation (11), we have

9§ F dp+0dp=0

AEFK

from which it follows that

C G
/ Fdp— / F dé=0(0,—62) + Fulps— Fapr (17)
B H

where ¥ is the value of ¢ along KF. Equation (17) will be called the
deflection condition.

In the indirect problem, the velocity on the blade surfaces is prescribed
as a function of fractional arc length S’ measured from S’=0 at the
leading edge stagnation point and S’'=1 at the trailing edge stagnation
point. Let these velocity distributions be Vs(S’) and Vp(S’) along the
suction and pressure surfaces. If Lg and Lp represent the physical lengths
of these surfaces, measured between stagnation points, the potential and
deflection conditions may be written

1 1
Ls/ Vst’—Lp/ Ve dS'=1(V. sin 6,— V. sin 65) (18)
0 (1]

and
1 1

Ls / (VF)s dS'—Lp ] (VF)p dS'=yo(8u—02) +Fubdr—Faldr  (19)
0 0

From the prescribed velocity distributions and upstream and down-
stream conditions, the corresponding values of F may be found from
(12) and (13) and Lg and Lp from (18) and (19). The lengths in the
(¢,¥)-plane, Aps and A¢p, may then be found from

1
Ags=Ls / Vs dS'
0

1
Agp=Lp / Ve ds'
1]
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and the diagram of the (¢,¢)-plane constructed. Eliminating 6 between
equations (11) and (14) gives
oF, 2 (4197
W a¢ \dF o¢
To determine the blade shape corresponding to the prescribed surface
velocity distributions and far upstream and downstream conditions, we

have to solve equation (20) inside and on the contour ADFJ, subject to
the boundary conditions:

=0 (20)

(1) Fis prescribed on BC, HG, AJ and DF
(2) Along ABand JH

F(,0) =F(¢+A4¢L, ¥o) (21a)

6($,0) =6(¢+A¢z, Yo) (21b)
(3) Along CD and GF

F(4,0) =F (¢+A¢r, ¥o) (21c)

0(¢,0) =8(p+Adr, ¥o) (21d)

Transformation of the (¢, ¥)-Plane

There are a number of possible approaches to a numerical solution of
this boundary-value problem. The one given here involves an approximate
transformation of the (¢,¢)-plane and some tedious algebra. However,
the error in the transformation can be controlled so that it is less than that
involved in the numerical methods and leads to a boundary-value problem
posed in a form for which this is a quick and elegant method of solution.

First, in order to get a good spacing of points on a finite difference grid
and not to map part of the suction surface twice, it is convenient to invert
the diagram in the (¢,¢)-plane through a transformation y—yo—y. We
can achieve this without altering the equations if we make the additional
transformation 6— —6. In what follows, this transformation will be as-
sumed to have been made. Define new variables ¢’ and ¥’ through the
equations

b

v="_ v (22a)

Agp | A '
= _42_*_& |:¢’+‘i— (a1+ag tanh ¢'):| (22b)

o= 8

where
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B A¢r+A¢r
GH=——"
Adp 2
o B A¢r—AdL

T A 2

D
T

The constant « is merely a scaling factor which can be chosen freely;
8 is a constant which, for values of ¢'>8/2, makes tanh ¢'~1. This
transformation approximately maps the contour ADFJ of the (¢,¢)-
plane into three rectangular regions in the (¢’,¢’)-plane as shown in
figure 3. If we write

o= B/A¢p
14 (¥/ ) as sech? ¢’

,___—(m+astanh ¢)
Vo[ 1+ (¥/¥0) as sech? ¢']

(), &)
Yo (2
d¢/, 3¢’/

] ] afd
— =b’ - —_ —
@), (o), 7o),

Writing H for dH /dF, equation (20) becomes

then we have

}

J=T K2 H G K4 F

=0 Xi 3 c K3 D ¢
fei =—ff §=B/ (=1

F1aURre 3. —One strip of the cascade in the (¢' ") plane.
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. 9°F aF[ o'« ab’]
2k b'2 il — 'H ' -
(a”H+ )¢,2+ - (@’'H)+b a¢+¢ v
'a PF o FF
Yo 3¢’y Y oYt

(23)

Although this equation looks more complicated than (20), the boundary
conditions (21a) and (21b) are simplified to

F(¢',0) =F(¢',)
6 (¢I70) =0 (¢’:a)
along AB and JH and similarly along CD and FG.

Numerical Analysis

Equation (23) may now be solved numerically by finite differences on
a rectangular grid in the (¢’,¢’)-plane. The method will be described for a
grid with spacing 8¢’ and 8¢’ constant in the ¢’ and ¢’ directions, respec-
tively. In practice, it is better to use an unequally spaced grid but, to
avoid unnecessary complication in the description, a discussion of un-
equal grid spacing will be left until later. The grid described here is shown
in figure 3. Write equation (23) in the form:

2

e POV

The method of solution will be to estimate the coefficients A, B, C and

D, solve (24) as a linear equation, and re-estimate these coefficients. The

process is continued until converged, which usually requires about three

or four cycles. Equation (24) may be approximated by finite differences
in the form:

A(5¢")? ¢,2+2Ba¢ ¢+4C¢S¢ ' =0 (24)

AF(FfH—2F i+ F )+ B (F#—F#) +Ci(Fi—Fii—Fh+Fio

i—1
+Dji(Fi—2F#+F; ") =0 (25)
for 1<:i<I—-1; 1<5<J—1.

The boundary conditions are (1) that Foé and F;* are given on BC and
HGQ, together with F,2 and F/ for j=0...J, and (2) that Fy'=F,* and
6o'=06,* along AB and JH and along CD and GF (egs. 21(a)-21(d)).
The method of solving these finite difference equations is a slight modifica-
tion of a method suggested to the authors by Stocker (ref. 2). Rewrite
equation (25), grouping terms according to superseripts ¢-+1, 7, and t—1.
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[—C/Fif+ (A +B;) F++-CF 1]
+[D;F;+*—2(A;4+D;) Fi+DjF 11*]

+[CAFT+ (A7 —B)F;~1—C;F;31]1=0 (26)

Inside the rectangle BCGH, augment equation (26) with the equations
Foi=Fy
Fri=F;

remembering that both Fy'and F;* are known. In the rectangles ABHJ
and CDF@, augment equation (26) with

FoizFJi
001'_—_ 0‘]‘

The last relation must be expressed in terms of F. This could be done
using equation (11), which implies that

o)~ Gv),
'/ \o¥'/;
and approximating this relation by finite differences. This was tried, but
it led to small but unacceptable errors. Instead, therefore, equation (11)
was integrated along ¢'=constant and the boundary conditions 8y'= 6,

inserted into the integral. The integral was then approximated by finite
differences using Simpson’s rule, giving

J ”2
5 (4 23) KBsn=F =0 (21)
=0 ar
where K;=1,4,2...2,4,1.
Therefore, inside the rectangles ABHJ and CDFG, equation (26) is
augmented by (27) and Fyi=F,.

Defining F¢ to be the column vector (Fy', Fy5, . . ., Fs), equation (26),
together with the augmenting equations, may be written in the form

MF# 4 NFigPF-1= Qi (28)

where M, N*and P* are square matrices and Q¢ is a column vector which
contains only zeros inside the rectangles ABHJ and CDFG and is of the
form (£, 0,0,0,...0, F;%) inside the rectangle BCGH. To solve equa-
tion (28), we begin by estimating F;i at every mesh point other than
those along ¢=0 and =1 where F is prescribed. From these estimates,
the coefficients 4, B, C, and D of (24) may be calculated at each point
and hence the matrices M*, N and P¢ of (28) may be determined. We
then look for a solution of (28) of the form
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Fi= RF#14t (29)

where the Ri are square matrices and the t’ are column vectors. To
determine Ri and t¢, we substitute (29) into (28) and, after some re-
arrangement, obtain

Fi= — (N4 PR¥)IMFH+ (N+PR™)(Q'—Pit*!)  (30)
Comparing (29) and (30), we obtain by inspection

i= — (N4 P:RY)\M¢ (31)

= — (VPR (P-1-Q) (32)

Equations (31) and (32) may be solved recursively for B¢ and t?, for
1<¢<I—1, once R® and t° are known. These are obtained from the pre-
seribed value of F°, for

Fo= R'F'+t° (33)
If (33) is to be satisfied, whatever the value of F!, we must have
R'=0
t9=Fo

Having determined R and ti, 0<¢<I—1, we can now solve for F every-
where, using (29) and commencing from

FI-! = RI-IFI 411

where F! is the prescribed boundary condition on i = 1. Having determined
F ;i everywhere, the coefficients A, B, C, and D of (24) may be re-estimated
and the process repeated until successive estimates of F everywhere
converge to within some tolerance. In practical cases, two to four itera-
tions are usually required, depending on the level of Mach number.

There is a further point in the calculation of F which requires dis-
cussion; namely, the treatment of the stagnation points, the points B, C,
G, and H in figure 3. Near stagnation points, V—0 and F—— . If,
when prescribing the velocities along BC and HG, zero velocities are
prescribed at the stagnation points, then it is clear that the methods
described so far cannot be applied.

A simple and approximate method of overcoming this difficulty, which
is equivalent to removing the stagnation points by cusping the blade, is as
follows. At the start of each compressibility iteration, a nonzero velocity
is assigned to the points B and H and another nonzero velocity to the
points C and G. With these values, together with the other prescribed
boundary conditions, we can now solve for F everywhere by the methods
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already described and this solution will satisfy all the prescribed boundary
conditions. However, for arbitrary choices of velocity at the points B and
H and C and G, the function F is not constant at upstream and down-
stream infinity; that is, although 9F/dy’ is zero there, 9F /3¢’ is not zero.
Furthermore, for given boundary conditions, the value of 9F/d¢’ at
upstream infinity is primarily controlled by the velocity assigned to B
and H, and 0F /3¢’ at downstream infinity by the velocity assigned to C
and G. Therefore, at the start of each iteration, as well as recalculating
the matrices M, N%, and Pi, new estimates are made of the velocities at
B and H and at C and @ to make 9F/d¢’ zero at points far upstream and
downstream. This additional change does not seriously affect the con-
vergence of the main iteration.

Although this is a rather crude treatment of the stagnation points, it
does lead to accurate answers in the following sense. When 6 is calculated
from F, equation (11) is integrated along a streamline starting from far
downstream where 6 is prescribed. The closeness of agreement of the
calculated and prescribed values of 6 far upstream is one measure of the
accuracy of the calculation. This agreement is best (about 0.2 percent for
100° of turning) when the adjustments described have converged.
Methods such as those of Woods (ref. 3) for dealing with singular points
were tried but did not appear to increase the accuracy of the calculation,
possibly because the computing grid was coarse compared with the small
region over which the velocity is close to zero.

From the converged solution for F, the blade coordinates may be cal-
culated. This is done by first integrating equation (11) along ¢’ =a/2 to
give 6 along the center of the blade passage and then integrating equation
(10) away from this mean line to give 8 on the blade surface. Having
found 6, the blade coordinates are found by integrating the equations

d
dx=—¢ cos 0—% sin 8
oV
d d
dy=7¢ sin 0+p—‘£ cos 6

The integration is performed in the (¢’y’')-plane and commences
from arbitrary values of z and ¥ In the middle of the blade passage, out
along the line ¢’ = constant to the blade surface and then along the blade
surfaces, ¥’ =0 and y’ = a. This path of integration avoids the necessity of
crossing the stagnation point region. The blade shapes obtained show the
cusps over the first and last two points on each surface and the leading and
trailing edges are generally rounded by eye.
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SIZE AND SPEED OF COMPUTER PROGRAM

The methods described have been programed on an IBM 360/65
computer. Using 40 points of each blade surface, 50 upstream and 50
downstream points, and 11 points across the blade passage, the program
size is 162K bytes. For a fully converged solution, three to five cycles are
required at an average of 24 seconds per cycle. For a fully compressible
calculation on such a large grid, the method is therefore very fast. To
obtain this speed of computation, an unequally spaced grid has been used,
with the grid becoming more widely spaced far upstream and downstream.
The only change required in the methods described is to modify the finite
difference approximations to derivatives in the obvious way.

Sample Calculation

The program has been tested on a number of examples, one of which, a
NASA blade taken from reference 4, is described here. In figure 4, the
circles and triangles represent the measured velocity distribution while
the full line is the velocity used in the calculation. The measured outlet
angle was changed by about 0.7° to —67.7° because the calculation cannot
take into account viscous effects. The true and calculated blade shapes are
shown in figure 5, where it will be seen that the agreement is generally
good. Agreement is worst near the leading and trailing edges. The shape of
the leading edge depends critically on the velocity distribution and this is

4 Bu= 0.0
Vu = 0.210%
o 8d=-67.7
§U Vd = 0.7079
t =09743

2 $ Measured velocity distribution

— Distribution used for
calculation

o WA 2 3 A 5 6 7 .8 9 1.0
FRACTIONAL ARC LENGTH

¥1GURE 4.—Velocity distribution
of blade of reference 4.




— —— _— True blade shape

Calculated blade shape

Figure 5.—Comparison of the true and calculated blade shapes.

impossible to measure at points sufficiently close together to give accurate
definition. Also, one of the measured points on the pressure surface has
been ignored, for it was found that a smooth velocity distribution through
that point did not reproduce the correct blade shape. The velocity dis-
tribution used in this region is merely guessed to give a reasonably good
blade shape.

LIST OF SYMBOLS

A function of velocity

A function of velocity

Distance normal to a streamline

Distance along a streamline

Fractional length along a blade surface measured between stagnation
points

Pitch

ata®

nn3

o~
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vV Velocity, normalized with respect to the stagnation sound speed
V. The z-component of V

V, The y-component of V

z  Cartesian coordinate measured in the axial direction

y  Cartesian coordinate measured in the pitchwise direction

v  Ratio of specific heats

¢ Flow direction measured counterclockwise from the positive z
direction -

Density, normalized with respect to the stagnation density
Potential function

Transformed potential function ’}‘

Stream function C/ - )

Transformed stream function

€€ o6

~

Subscripts and Superscripts

Far downstream

Index referring to the value of ¢’
Index referring to the value of ¢/
Leading edge

Trailing edge

Far upstream

RN e Y
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DISCUSSION

D. PAYNE (Rolls-Royce) : The authors are to be congratulated on
applying a highly efficient matrix method to the solution of the boundary-
value problem which cascade design presents in the compressible flow
function plane.

The technique used to solve each iterate of equation (24) (as yet un-
published by Professor Stocker) transmits boundary-value information
just once to the right through the vectors t and just once to the left
through the F vectors themselves. This elegant technique thrives on
highly rectangular grids, such as the one established here in the (¢’ ,¥')-
plane, although the slightly approximate transformation {(22b) into this
plane could possibly be avoided by the use of a variable skew mesh in
the (¢,¥)-plane.

The starting approximation to the coefficients in equation (28),
although not explicitly stated, presumably results from taking H=F, and
this assumption is, in itself, quite accurate for Mach numbers less than
about 0.8 (ref. D-1).

The desirability of basing the design of gas turbine blading on a pre-
scribed distribution of surface velocity can be justified by consideration
of the mechanical, aerodynamic, and mathematical aspects of the overall
design problem (ref. D-2). For the past eight years, all turbine blades
designed at the Bristol Engine Division of Rolls Royce Ltd. (previously
Bristol Siddeley Engines) have been produced on this basis, using the
Bristol Design Transformation (ref. D-3) to generate the necessary
cascade geometry. Until now, it has been a rather unfortunate handicap
that, while a complete velocity distribution theory (parametric descrip-
tion of velocity distribution, optimization under geometric constraints,
wake models, ete.) could be established for an arbitrary density-speed
relation (ref. D-1), the actual transformation from the (¢,¢)-plane to the
(z,y)-plane was only practical, on a routine basis, for a simplified form of
the p(V) function (linearized compressible flow, or Chaplygin gas).
Although the linearized transformation can be shown to agree closely
with plane-flow experiments for Mach numbers up to about 0.85 (ref.
D-1), it is to be expected that the methods of Mr. Silvester and Miss
Fitch will produce a routine design transformation abie to cope with near-
sonic and, perhaps, slightly supersonic flow, as well as allowing incorpora-
tion of blade-to-blade variations of radial aerodynamic influences, as such
variations become better understood.
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J. P. GOSTELOW (Cambridge University): The authors introduce
their promising new matrix techniques as being suitable for both the
direct and the indirect problems of cascade flow prediction. Since it is
well known that some considerable effort at their company (ref. D-4)
has becn invested in iterative solutions of the direct problem, using the
Martensen method (ref. D-5) as a basis, it would be of interest to know
whether the iterative approach has failed and has therefore been written
off. The difficulty with the iterative schemes is that the source distribution
contains first derivatives of p and, therefore, second derivatives of ¢. It
would not be surprising, therefore, if convergence difficulties were experi-
enced at high subsonic Mach numbers where the desired result is masked
by rounding-off errors. This question does not concern simply the direct
problem since, as Murugesan and Railly (ref. D-6) have shown, the
Martensen method can become a successful design tool in solving the
indirect problem.

It is interesting to observe that Silvester and Fitch deliberately re-
arrange the equations so that density-change information is transmitted
immediately into the flow solution. It is more conventional for the density
. calculation to lag the stream function calculation by one iteration, again
deliberately to improve stability. This latter approach is employed in
Smith’s exccllent paper (ref. D-7) and in most streamline curvature
solutions to the axisymmetric problem. It was clear from Smith’s presenta-
tion that the trailing density approach is justified for cases where the
local Mach number does not exceed 0.85, but even linearized flow models
can cope with such examples. It would be interesting to know whether
Smith can retain numerical stability, with density lagging by onc itera-
tion, when sonic conditions are reached and exceeded on the blade surface.

The kernel of the question is whether one ought to follow Silvester and
Fitch in rearranging the equations when local sonic conditions are ap-
proached.

L. MEYERHOFF (Eastern Rescarch Group): I have three questions.
The first is about trailing edge conditions. I'm curious to know
what the author believes would happen if, in our reiteration, the stagna-
tion point of the trailing edge was set right at the trailing edge to zero
velocity and the iteration continued with that fact reinserted in each
iteration. The other questions are (1) What is meant by the term “cycle”
for fully converged solution in your report? Is the word “cvele” meant to
be “iteration number”’? and (2) What is the total number of mesh points
allowed by the program at present?

H. YEH (University of Pennsylvania): You refer to the need for an
estimate by the computer for the velocities near the inlet and the trailing
edge in order to have the prerequisite velocity at plus and minus infinity.
Now, isn’t this due to the fact that they really cannot completely describe
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the velocities anyway because you must have prerequisite separation for
the whole profile to fulfill your inlet and exit conditions at infinity.
Furthermore, there is a condition for which you get a closed profile. In
other words, the profile may not be closed; this is a so-called conditioned
closure. Now, if you had to make use of these conditions beforchand, and
if you had considerable freedom in adjusting the velocity distribution and
did so0, it seems to me that you would not really need a computer to make
further adjustments.

J. W. DZIALLAS (General Electric Co.): Here are a few questions
which should be of general interest.

(1) If the flow is assumed everywhere subsonic, how can the field
contain “supersonic patches”? If there are these patches, where are they
located? Doesn’t the authors’ selection of the function F(V') near the
stagnation points strongly affect these supersonic patches?

(2) Isthe Kutta condition satisfied?

(3) How close to the sonie velocity can the authors’ method go on the
profile surface? Does the solution become unstable?

(4) What useful information can the authors extract from their
hodograph? ,

(5) Recalling the comparison with the experimental velocity dis-
tribution presented in a slide, I ask: How valid is this comparison since,
through smoothing of the data, adjustments on the function F(V), and
variable grid size it seems possible to arrive at predetermined results.
How many trials are necessary to recover the profile?

(6) It would be interesting to see a comparison with an exact direct-
method airfoil computation.

P.N. R. SHEKHAR (University of Liverpool, England) : At Liverpool
University, we have been concerned with the problem of designing airfoils
in two-dimensional cascades. Hence, we would like to raise the following
points: '

(1) Equation (17) is valid only for special cases of y. According to
reference D-8, the deflection condition for any v is (fig. 2)

2 st
[ Gogads+o/o anr— [ [ ai3(1/0)/081ds db=0

y=0 ¥ ¢p=—00

This equation can only be solved iteratively. The final solution is con-
sistent with the Price-Martensen theory (ref. D-9).

(2) In the main paper, the problem is considered as well posed in the
(¢’¥’)-plane. However, the problem can be well posed in the (¢,¢)-plane
itself by Green’s function of the second kind as demonstrated in reference
D-8. Hence, one wonders if it is not advantageous to work in the (¢,¥)-
plane itself?
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(3) Once the boundary conditions are formulated, the problem can
be treated as a typical boundary-value problem. The methods available
include (i) Green’s function, (ii) finite difference scheme, and (iii) varia-
tional finite element. Even Stocker’s method (ref. 2) could be used ad-
vantageously. However, in reference D-8, it is used to get the following
matrix:

[41le]1=L/]

where A is a codiagonal block matrix with submatrices that are also
codiagonal. No equation contains more than five nonzero elements and
only the nonzero elements are stored; hence, the storage requirement is
minimized. This method is attractive compared to the marching procedure
for two reasons, at least.

(a) The distribution of log ¢ is found at all the interior points of
the rectangle in one go.

(b) The boundary conditions are consistent with the interior
solution, whereas in marching procedures this is not so. In our opinion,
once the boundary conditions are known, it really does not matter which
method is adopted for determining log ¢ inside the rectangle. We are sure
Stocker’s method could also be adopted very effectively.

(4) At stagnation points, logq has logarithmic infinity and 6 is
multivalued. According to L. C. Woods, the movement of the front
stagnation points by tdso of chord distance affects the velocity peak by
more than 10 percent for isolated airfoils (let alone cascades). What is
really important is not so much the presence of the stagnation points as
the effect it might have on the rest of the solution. It is probably true that
Woods’ method needs a very refined mesh. However, Payne has proposed
a very attractive method for determining the effect of stagnation points
on the rest of the solution by integral equation techniques. A detailed
analysis is available in references D-8 and D-1. We find it very difficult
to accept the concept that the solution achieved by ignoring four stagna-
tion points is satisfactory. One could even say that the classic channel
model proposed by Stanitz is satisfactory for cascades. Stanitz has pro-
duced some very realistic profiles in NACA 1116.

(5) Last, we would like to examine the following two problems:

(a) Inconsistency with the Price-Martensen theory

(b) The simplicity of Green’s function solution.

The Price-Martensen theory has been used extensively and, to a great
extent, satisfactorily. However, we understand from Silvester-Fitch that
Smith’s solution is consistent with the design problem. Presumably this
means that the stagnation points, shape of the stagnation, and other
streamlines tie up completely. Hence, it should be pointed out that with
the help of design and Smith problem, and treated on an iterative basis,
it should be possible to produce a one-to-one correspondence and a closed
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profile. The simplicity of Green’s function solution can be illustrated very
simply by taking the incompressible or linearized flows. The profile shape
depends completely on the boundary conditions and it is immaterial what
is happening inside the boundary. In the method reported, it is necessary
to know what is happening not only on the boundary but inside the
boundary as well. The difference between the incompressible and com-
pressible flow lies in the presence of a double integral term and some
minor points.

SILVESTER anp FITCH (authors): The authors agree with Dr.
Payne about the desirability of being able to design blades to prescribed
surface velocity distributions. We believe that both the direct and in-
direct approaches can be useful to the blade designer and it was for this
reason alone that we developed an indirect method alongside our existing
direct method based on the work of Martensen and Price.

We have found that the Martensen-Price method converges well for
subsonic flow and that convergence can be obtained, although somewhat
more slowly, for flows containing supersonic patches, provided these are
not too large. We have also been looking at matrix methods for the direct
problem because we believe that they can be made faster than singularity
methods. We also believe, but have not shown, that the immediate
introduction of density change terms into the equations will improve the
stability and rate of convergence. '

Concerning details of the calculation, we agree with Dr. Payne that
we could have worked on a skew mesh in the (¢,)-plane. With the
method adopted, the algebra is more tedious, but this is compensated for
by the fact that the approximation of partial derivatives by finite differ-
ences with small truncation error and using only the lines, i—1, 4, ¢+1 is
easier in the (¢’,¢)-plane.

We do not commence the calculation by assuming H =F. Referring to
figure 3, we assume velocities of V, on AB and JH, V4 on CD and GF,
and the prescribed velocities on BC and HG. The velocity elsewhere is
assumed to vary linearly with ¢’ at constant ¢'.

In response to the comments of Meyerhoff and Yeh, it is certainly true
that for given values of V and 6, far upstream and downstrcam, not every
velocity distribution that the designer may prescribe will give a closed,
nonintersecting curve for his blade profile, but only those velocity dis-
tributions which satisfy the so-called closure conditions. It is also true
that although we have tacitly assumed a closed profile when deriving the
equations, we have not placed any restrictions on the velocity distributions
that may be prescribed and so may not obtain sensible blade shapes for
every velocity distribution. When we use this program, we assume that
the designer is able to specify a velocity distribution which nearly satisfies
the closure condition and which will require only slight modification within
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the program. In practice, we use the program in conjunction with a
direct method, so this is usually true. We justify this approach with two
arguments. First, when designing a cooled turbine blade, there are factors
other than aerodynamic (stressing and cooling considerations) which
place restrictions on an acceptable blade geometry. In order to satisfy all
these conditions, it is likely that the designer will require three or more
runs of the program to achiceve a satisfactory blade, modifying his velocity
distribution with each successive run. Since the program prints out the
modifications to the velocity distributions that it makes internally and
these can be fed into the next run, after the first one or two runs, little if
any internal modification is required. Second, we know of no method of
determining velocity distributions for compressible flow satisfying the
closure condition which would involve the designer in any less work than
the method we use.

The choice of nonzero velocities at the stagnation points is a necessity
since it is impossible to evaluate F or H for zero velocity.

If arbitrary, nonzero values are used and reinserted each cycle, a con-
verged solution may or may not be found. If convergence is obtained,
then it will be found that, although the velocity attains the values V.,
and V, far upstream and downstream, 9V /3¢ is not zero there. In addi-
tion, integration of 39/8¢ between far upstream and far downstream will
not result in the prescribed turning, 6,— 8. The authors regard the finding
of velocities at the stagnation points as a process of finding the shape and
direction of cusps which must be added to the rounded profile in order to
support the prescribed velocity on the remainder of the profile.

In the paper, the words “cycle’” and “iteration’ have both been used to
denote the process of solving numerically equation (24) for fixed estimates
of the coefficients A, B, C, and D at every point and of the velocities of
the stagnation points.

The program allows up to 50 points upstream and downstream of the
blade, 40 points on cach surface of the blade, and 11 points across the
blade passage. Best results have been obtained by using a mesh of variable
spacing in both the ¢’ and ¢’ directions, having points closer together near
the blade surfaces and particularly so near the leading and trailing edges.

As to the remarks of Dziallas, it must be made clear that the indirect
method described here is intended for use as a design tool in which blade
shapes are determined from velocity distributions prescribed by the
designer. Although we have tested the program by using it as a direct
method (that is, by trying to recover blade shapes from measured velocity
distributions) this is not the mode in which it was intended the program
should be used. The method described here is not intended as an alterna-
tive to the direct methods but as an additional aid to the blade designer.
With this intended use of the program in mind, such questions as, “How
many trials are necessary to recover a profile?’” are not strictly applicable.
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Taking the last two questions first, the program has been tested by
recovering blade shapes both from measured velocity distributions and
from distributions calculated by the singularity method of Martensen
and Price, the matrix method of D. J. Smith, and the author’s own matrix
method, which is still under development. (The method of Katsanis was
not available to the authors.) It was found that, for a given blade, the
three direct methods gave velocity distributions which differed by small
but significant amounts, so that each produced a slightly different blade
with the indirect program. Best agreement was with the authors’ own
direct method. Because of the inconclusive nature of these tests and
because it is a more valid test of a program to a designer, most testing of
the program has been with measured velocity distributions. In those cases
where the tests were two-dimensional and shock-free, blade shapes could
be recovered well with velocity distributions close to those measured.
There is some freedom in choosing F near the leading and trailing edges
because pressure tappings are rarely close enough to give an adequate
picture there. Such a test of the program is a useful one, provided one
remains close to the measured results (which may include small experi-
mental errors). It simply is not true that one can arrive at predetermined
results. Blade shapes are independent of the mesh size, provided it is
fine enough.

Although the numerical methods used can be justified only for elliptic
equations and hence subsonic flows, even so we can and sometimes do
prescribe velocity distributions with supersonic regions. If eonverged
answers are obtained, these must necessarily contain supersonic patches
adjacent to the regions of the blade when supersonic velocities have been
specified. It can be assumed that in these supersonic regions, small errors
due to round-off increase the more distant a mesh point is from the
boundary where the velocity is specified. If the patches are small, the
errors may not have a chance to grow too large, so it seems possible that
sensible answers may be obtained. There is, however, no provision in the
program for discontinuous solutions as would be caused by shocks.

The program effectively selects F near stagnation points. We still have
some further work to do on this, but we have found that it is more difficult
to converge on velocities at the stagnation points when supersonic patches
have been prescribed.

As for the Kutta condition, remember that we produce cusped blades.
The velocities on the cusps (that is, the velocities which are chosen to
satisfy upstream and downstream boundary conditions) are chosen to be
equal on both pressure and suction surfaces. In addition, we usually
prescribe velocity distributions which become equal on both surfaces
close to the leading and trailing edges. This treatment is something like a
Kutta condition, although we do not talk specifically in terms of zero
velocity.
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We have not looked seriously at solutions in the hodograph plane.

In reply to Mr. Shekhar, if the function F is defined by equation (8),
then equation (17) is true for all values of v and for all Mach numbers.
Closed analytic forms for F ean be found for rational values of v, and
the values of f and 4 given by the authors should be quite sufficient for
all practical purposes. The error involved in using vy=4/3 for the design
of a hot turbine blade will be negligible compared with the errors intro-
duced by other assumptions in the mathematical model such as, for
example, isentropic inviscid flow. If this is accepted, then it is certainly
more convenient and almost certainly more accurate to solve the potential
and deflection conditions explicitly by simple numerical integration of the
prescribed velocity distribution than iteratively by methods requiring
the numerical evaluation of double integrals over the whole flow field
with each compressibility eycle. Also, it is worth mentioning that the
deflection condition, as we have formulated it, depends only on the
boundary conditions. This is useful in two ways. First, it enables the
surface lengths to be calculated without any knowledge of the flow field
elsewhere and so allows the possibility of abandoning the program before
any major computation has been performed if the prescribed velocity
leads to unrealistic surface lengths. Second, it allows a check of the ac-
curacy of the solution of equation (24) for fixed boundary conditions,
because when the coordinates (z,y) of the blade are eventually found from
the solution of (24), the lengths can be calculated and compared against
those calculated from the potential and deflection conditions. We have
found that for fully converged answers, the lengths calculated by the two
methods agree to within less than 0.2 percent.

The relative advantages of the (¢,¢) and (¢’,¢) planes have been given
in the reply to Dr. Payne.

With reference to question (3), it seems as though Mr. Shekhar believes
that the method used by the authors is a marching procedure and one in
which, in some way, the solution is inconsistent, with the boundary condi-
tions. We do not use a marching procedure; the solution obtained depends
at every point upon all the boundary conditions and is completely con-
sistent with them. Moreover, the solution is obtained “all in one go” just
as much as in his own method, for (using Mr. Shekhar’s own notation),
Stocker’s method is simply a method of solving the matrix equation

[A1e]=L/]

Concerning question (4), again, it is not true to say that the authors
have neglected the stagnation points. There is a striking similarity be-
tween the method used by the authors and the treatment described by
Payne as a relaxed treatment. Referring to figure 3, Payne’s method
consists of the following steps:




MATRIX METHODS FOR CASCADE DESIGN AND FOR COMPRESSIBLE FLOW 99

(1) Choose nonzero veloeity at the stagnation points.

(2) Set the velocity at V, along AK; and JK, and V; on K,F and
KsD.

(3) Apply the cyclic or repeat conditions to the segments K.H, K;B,
GK,and CK,.

(4) Set up a variable, but one-parameter, mesh spacing.

(5) Solve as though there were no singularities.

Payne points out that if a solution is now obtained, ignoring the singu-
larities and with an arbitrary mesh parameter, the points B and H, for
example, will not be one blade pitch-apart in the physical plane—but for
a particular choice of the mesh parameter, this can be achieved. Notice
that by making the assumptions (2), Payne is, in fact, forcing 4V /¢ =0
far upstream and downstream but, at the same time, relaxing the repeat
conditions on # over the segments on which V is prescribed. Relaxing
these conditions permits the streamlines JH and AR to be of different
shape when they should be identical, but the error is reduced by forcing
B and H to be nearly one pitch apart.

This approach is very similar to that of the authors. We apply the
repeat conditions on both V and 8 over the whole length of the dividing
streamlines, so that the streamlines corresponding to AB and JH, for
example, are identical in shape. It then follows that because A and J are
one pitch apart in the physical plane, B and H must be. If we were to
follow Payne and choose fixed velocities at the stagnation points, then we
would have to choose a mesh spacing to make 9V/3¢=0 far upstream
and downstream. Instead, we keep the mesh spacing fixed and vary the
velocity at the stagnation points. The mesh spacing and the chosen
velocity are to some extent interchangeable, for both affect the calculated
values of derivatives of V near the leading and trailing edges. Payne also
justifies the use of such approximate methods of dealing with stagnation
points.

As already stated in reply to Mr. Duzillias, the authors do not obtain
complete agreement with any direet method, just as none of the direct
methods is in complete agreement with any other. The differences are
small, but some further work is needed.

Finally, I would agree that where the equations of motion can be
reduced to Laplace’s equation (that is, for two-dimensional incompressible
flows or flows of sufficiently low Mach number that one could reasonably
assume H =F) an integral method is probably to be preferred to a differ-
ential equation approach. Most practical cases, however, cannot be
described adequately by Laplace’s equation, either because the Mach
number level is too high or because it is necessary to take into account
effects such as stream-tube thickness variation or the fact that a turbine
blade row does not form a linear two-dimensional cascade. (These effects
have yet to be incorporated in the authors’ program.) Therefore, in most
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practical cases, it is necessary to compute the fluid velocity everywhere
(not only on the boundaries), whichever method is used. In such cases,
it is debatable whether integral methods are to be preferred to differ-
ential methods. It should be pointed out that the double integral to which
Mr. Shekhar refers is not simply a minor term in integral methods; apart
from increasing the amount of computation to be done (compared with
incompressible flow) it does express the difference between incompressible
and compressible flow and this can be quite marked when Mach number
levels are high. Further, if the other effects referred to were included, the
double integral term would express the difference between plane in-
compressible flow and compressible flow with stream-tube thickness
variation and in an annular cascade.
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